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Abstract Microsatellite markers were used to map
the major genes Bg (determining black glume colour),
Rg1 and Rg3 (red glume), and a locus determining
smokey-grey coloured glume to the distal ends of the
short arms of the homoeologous group 1 chromo-
somes, proximally (or closely linked) to Xgwm1223
and distal to Xgwm0033. On this basis, we propose
that these genes represent a set of homoeoloci, desig-
nated Rg-A1, Rg-B1, and Rg-D1. Rg3 and Bg appear
to be variant alleles of Rg-A1. Both Rg3 and Bg are
closely linked with the major glume pubescence gene
Hg. Similarly, the hexaploid wheat smokey-grey
glume gene and Rg2 represent alleles at Rg-D1. The
microsatellite markers linked to the Rg genes were
used to analyse a phenotypically and genotypically
characterized set of Siberian spring wheats. A coinci-
dence between the presence of the 264-bp allele of
Xgwm0136 and Rg-A1b (Rg3) was observed; so
Xgwm0136 can probably be used as a diagnostic
marker for this gene.

Introduction

Glume colouration and pubescence are important tax-
onomic discriminators in wheat (Mansfeld 1951; Doro-
feev et al. 1979) and are commonly used for the
determination of homogeneity within or distinctness
between wheat varieties (UPOV 1994). However, they
are also known to be associated with the crop’s adapt-
ability. In particular, coloured glumes are frequent in
varieties adapted to growing regions characterized by
high light intensity, as postulated by Flaksberger
(1935) and supported by the data of Börner et al.
(2005). In addition, glume colouration has a selective
advantage in regions characterized both by a short
growing season (Börner et al. 2005) and where low
temperatures are experienced during the vegetative
period (Martynov and Dobrotvorskaya 1997). Glume
pubescence appears to have a beneWcial inXuence on
drought or cold tolerance (Threthowan et al. 1998;
Reynolds et al. 1999; Skovmand et al. 2003; Börner
et al. 2005).

The mode of inheritance of glume colour and pubes-
cence has been understood for many years (Tschermak
1901; BiVen 1905), and with the development of wheat
aneuploids, the major genes responsible for glume col-
our and pubescence were located to their respective
chromosomes. Thus, red glume colour genes were
mapped to chromosome 1B (Rg1) of hexaploid wheat
(Unrau 1950), to chromosome 1D (Rg2) of the syn-
thetic wheat of Triticum durum (AABB) £ Aegilops
tauschii (DD) (Kerber and Dyck 1969), and to chromo-
some 1A (Rg3) of hexaploid wheat (Yelokhina 1989;
Sobko and Sozinov 1993), while Bg (black glume col-
our) was also mapped to chromosome 1A (Burnham
1962; Law and Chapman 1974). Meanwhile, two genes
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responsible for glume pubescence were mapped to
chromosomes 1A (Hg; Sears 1953) and 1D (Hg1; Gul-
yaeva 1984). Apart from the red and black glume col-
ours, dark-brown and smokey-grey glumes have also
been described in hexaploid wheat Triticum aestivum
(Koval 1994; Pshenichnikova et al. 2005). These are
under the control of genes on chromosome 1D, and the
smokey-grey colour gene is thought to be an allele of
Rg2 (Pshenichnikova et al. 2005). All these genes (Rg,
Bg, Hg and the smokey-grey glume colour gene) are
closely linked to their respective gliadin (Gli-1) loci
(Poperelya et al. 1980; Jones et al. 1990; Sobko and
Sozinov 1993, 1997; Panin and Netsvetaev 1986;
Khlestkina et al. 2000; Pshenichnikova et al. 2005),
establishing their location to the short arms of the
homoeologous group 1 chromosomes.

The intra-chromosomal locations of Bg, Hg, and Rg1
have been determined in diploid and tetraploid wheats
(Dubcovsky and Dvorak 1995; Van Deynze et al. 1995;
Blanco et al. 1998; Salina et al. 2006), but not to date in
hexaploid wheat. Rg3 and the smokey-grey colour
genes were not mapped. Thus, in the present study, we
have exploited relevant microsatellite markers (Röder
et al. 1998) for the precise comparative mapping of Hg,
Bg, Rg1, Rg3, and the smokey-grey glume colour gene
in hexaploid wheat. Furthermore, we report the distri-
bution of alleles at microsatellite loci linked to these
genes within a phenotypically and genetically character-
ized set of Siberian spring wheats.

Materials and methods

Plant materials

Five crosses between hexaploid wheat (T. aestivum L.)
cultivars, lines and accessions were used to create map-
ping populations (Table 1).

1. Cultivar ‘Zhnitsa’ (Rg3/hg), kindly provided by
T.T. Efremova (ICG, Novosibirsk), was crossed
with white and hairy glumed wheat accession
‘TRI 542’ (IPK-Genebank collection).

2. Near-isogenic line ‘i:S29BgHg’ carrying the domi-
nant alleles of Bg and Hg introgressed from the
black/hairy glumed accession ‘k-20551’ via the near-
isogenic line ‘ANK-22A’ (Arbuzova et al. 1998)
was crossed with white and glabrous glumed wheat
accession ‘TRI 546’ (IPK-Genebank collection).

3. Cultivar ‘Federation’ (Rg1) was crossed with white
and glabrous glumed wheat accession ‘TRI 546’.

4, 5. Two populations were used for mapping the
smokey-grey glume colouration gene: cultivar

‘Golubka’ (smokey-grey glume) £ cultivar ‘Novo-
sibirskaya 67’ (white glume) and cultivar ‘Golubka’
(smokey-grey glume) £ Kazakstan wheat line
‘L301’ (white glume).

A collection of Siberian spring wheat cultivars
(Table 2), including some with known presence/
absence of Rg genes (Efremova et al. 1998), was used
for phenotyping and microsatellite-based genotyping.

Phenotypic evaluation

Phenotyping was performed at either the F2 (crosses 2
and 5) or F3 (crosses 1, 3 and 4) generations. At F3, 15
individuals per line were evaluated. The population
sizes are given in Table 1. The F1 plants of cross 1 were
weak and highly sterile, so only 48 F2 progeny could be
harvested. Plants were scored for glume colour (white,
red/brown, black or smokey-grey), and glume pubes-
cence (the latter only in crosses 1 and 2). Glume colour
in cross 3 was determined by the segregation of Rg1,
giving a strong contrast between dark-red and white,
while in cross 1, the segregation of Rg3 resulted in a
less clear contrast.

Microsatellite analysis

Leaf material was obtained from F2 plants of all Wve
mapping populations. DNA was extracted from fresh
leaves following a procedure modiWed from that of
Plaschke et al. (1995). Because both the glume colour
and pubescence genes are located on the homoeolo-
gous group 1 chromosomes, Gatersleben Wheat
Microsatellite markers (GWM) mapping to these chro-
mosomes (1A—15 loci; 1B—20 loci; and 1D—13 loci)
were selected. The characteristics of all the microsatel-
lites and the experimental procedures associated with
their use are described by Röder et al. (1998). Unpub-
lished primer sequences are available upon request.
Two additional markers were used for chromosome 1D
mapping (Xbarc149 and Xbarc152, Song et al. 2005).
Linkage maps were constructed with MAPMAKER
2.0 (Lander et al. 1987). Chromosomal arm positions of

Table 1 Crosses and population sizes

Cross 
no.

Cross Number of F2 
plants/F3 families

(1) ‘Zhnitsa’ £ ‘TRI 542’ 48 F3 families
(2) ‘i:S29BgHg’ £ ‘TRI 546’ 97 F2 plants
(3) ‘Federation’ £ ‘TRI 546’ 105 F3 families
(4) ‘Golubka’ £ ‘Novosibirskaya 67’ 74 F3 families
(5) ‘Golubka’ £ ‘L301’ 44 F2 plants
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loci mapped in the centromeric region were conWrmed
by the analysis of the relevant ditelosomic lines of ‘Chi-
nese Spring’. Selected markers linked to the Rg genes

(1A—Xgwm0136; 1A, 1B, 1D—Xgwm0033; 1A, 1D—
Xgwm1223; 1D—Xgwm0337) were used for the geno-
typic analysis of the Siberian spring wheat collection.

Table 2 Glume colour and microsatellite marker data for a set of Siberian spring wheat cultivars and the parents of the mapping pop-
ulations (black rectangle—‘present’, white rectangle—‘absent’, grey rectangle—‘likely present’)

* Genes controlling glume colour of these cultivars were determined by Efremova et al. (1998)
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TRI 546     
TRI542     
FEDERATION    
ZHNITSA*     
I:S29BGHG     
SYNTHETIC     
OPATA 85     
GOLUBKA 
ISKRA*     
TCEZIUM 111 
OMSKAYA 9     
OMSKAYA 11    
NOVOSIBIRSKAYA 89     
KANTEGIRSKAYA 89     
SIBAKOVSKAYA 3     
TCELINNAYA 60     
SELENGINSKAYA*     
MILTURUM 2078*     
KRASNOYARSKAYA 1103*      
SKALA     
TARSKAYA 2     
PYROTHRIX 28*     
STRELA*     
ALENKAYA*     
BALAGANKA *     
GDS-11     
SIBIRKA 1818*     
IRTYSHANKA 10     
SIBIRYACHKA 8     
NIVA*     
DUVANKA 501*     
KROHINSKAYA     
POBEDA*     
TCEZIUM 94    
NARYMSKAYA 3     
NOVOSIBIRSKAYA 22     
NARYMSKAYA 246     
SIBIRYACHKA 4     
LYUTESTCENS 62     
AKMOLINKA 1     
MILTURUM 553*     
ALBIDUM 43     
SARATOVSKAYA 29     
NOVOSIBIRSKAYA 67     
IRKUTSKAYA 49 
LYUTESTCENS 116 
ALBIDUM 3700    
SARATOVSKAYA 36     
SARATOVSKAYA 39     
ALTAISKAYA 50     
ALTAISKAYA 60     
ALTAISKAYA 98     
ALTAISKII PROSTOR     
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Results

Chromosome 1A mapping

Among the F3 families from cross 1, 8 were homozy-
gous red, 28 heterozygous and 12 homozygous white,
consistent with a monogenic 1:2:1 segregation
(�2 = 2.00, P > 0.30). In the F2 from cross 2, 79 individu-
als had black glumes, and 18 were white, Wtting a
monogenic 3:1 segregation ratio (�2 = 2.15, P > 0.10).
Both red and black glume colouration were dominant
over white. Additionally, both populations segregated
for glume pubescence (Hg). There was no recombina-
tion either between Rg3 and Hg in cross 1, or between
Bg and Hg in cross 2. Of the Wfteen 1A microsatellite
markers tested, ten were polymorphic between the
parents of cross 1 (67%) and nine of cross 2 (60%), and
could therefore be genetically mapped (Fig. 1). Both
Rg3 and Bg map to the distal end of chromosome 1AS,
closely linked to Xgwm1223 (0.0 and 0.6 cM, respec-
tively) and distal to Xgwm0136 (4.7 cM from Rg3) and
Xgwm0033 (4.6 cM from Bg). The highly similar intra-
chromosomal positions of Rg3 and Bg loci is estab-
lished by seven markers common to both maps.

Chromosome 1B mapping

In the F3 from cross 3, a segregation of 25 homozygous
red glumes, 59 heterozygous and 21 homozygous white
was observed. This is consistent with the presence of a
monogenic dominant gene (�2 = 1.90, P > 0.30). Of the
20 chromosome 1B microsatellite markers tested, 15

(75%) were polymorphic between the parents of the
cross, allowing the mapping of Rg1 to the distal end of
chromosome 1BS, proximal to Xgwm1078 (4.2 cM)
and distal to Xgwm0550 (3.1 cM) and Xgwm0033
(6.5 cM) (Fig. 1).

Chromosome 1D mapping

The F3 of cross 4 produced 43 lines homozygous for
smokey-grey glumes, 22 heterozygous and 9 homozy-
gous white, which does not Wt the expected 1:2:1 ratio
(�2 = 43.41, P < 0.01). Of the 15 chromosome 1D
microsatellites tested, 9 (60%) were polymorphic
between the parents, but the pattern of segregation of
all these loci was distorted. For this reason, a second
cross involving ‘Golubka’, the source of the smokey-
grey glumes, was investigated (cross 5). In this case, the
smokey-grey glume locus segregated consistently with
a 3:1 ratio (�2 = 0.121, P > 0.70), and the segregation
pattern of the microsatellite loci was not distorted.
Linkage maps of chromosome 1D were obtained using
both populations 4 and 5 involving, respectively, nine
and three microsatellite loci (Fig. 1). The smokey-grey
glume locus mapped to the distal end of chromosome
1DS, closely linked to Xgwm1223 (1.5 cM) and distal
to Xbarc152 (13.1 cM).

IdentiWcation of diagnostic markers

The germplasm set (53 entries, including the Siberian
spring wheat collection and the parents of the mapping
populations, Table 2), were genotyped at loci

Fig. 1 Comparative mapping of the genes for glume colouration
and pubescence in hexaploid wheat using microsatellite markers.
Chromosome designations are indicated above. Genetic dis-
tances are given in centimorgans (cM). Crosses for mapping pop-

ulations are indicated below. The maps were constructed with the
MAPMAKER 2.0 computer program (adapted from Lander
et al. 1987). Map of 1DS chromosome in ITMI population was
obtained from Börner et al. (2002) and Röder et al. (1998)
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Xgwm0136 (1A), Xgwm0033 (1A, 1B, 1D), Xgwm1223
(1A, 1D), and Xgwm0337 (1D). These markers were
selected as they amplify characteristic alleles among the
mapping parents, namely Xgwm0136_264 (‘Zhnitsa’,
Rg3), Xgwm0033_120 (‘Federation’, Rg1),
Xgwm1223_170 (‘Zhnitsa’, Rg3) and _165 (‘Golubka’,
smokey-grey glume), and Xgwm0337_185 bp (‘Gol-
ubka’). The resulting genotypic data were matched with
the Rg classiWcations of Efremova et al. (1998) and/or
with the phenotypic data obtained in the present study.
No coincidence was found between characteristic
microsatellite alleles and the presence of a particular
glume colour gene for either Xgwm0033, Xgwm1223 or
Xgwm0337 (Table 2). However, the 264 bp allele of
Xgwm0136 was ampliWed in Wve entries (cultivars
‘Strela’, ‘Duvanka 501’, ‘Milturum 553’, ‘Iskra’, ‘Zhn-
itsa’) known to carry Rg3 (Efremova et al. 1998), while
all entries lacking Rg3 did not amplify this allele. The
presence of one exception (‘Milturum 2078’, see
Table 2) may be explained by recombination between
Rg3 and Xgwm0136 (4.7 cM, see Fig. 1).

Discussion

DNA markers have facilitated the precise mapping of
several sets of wheat genes, and this has provided good
support for the existence of homoeologous series. For
instance, homoeologous sets have been deWned for red
grain colour (R) (Flintham and Gale 1995), photoperi-
odic response (Ppd) and vernalization sensitivity (Vrn)
(Börner et al. 1998), sphaerococcoid spike morphology
(S) and anthocyanin colouration of coleoptiles (Rc)
(Salina et al. 2000; Khlestkina et al. 2002) and awn col-
our (Bla) (Börner et al. 2002). The homoeoloci deter-
mining glume colouration each map towards the end of
the 1S chromosome arms, distal to Xgwm0033 but
proximal (or closely linked) to Xgwm1223. The map
positions of Bg and Rg3 on chromosome 1AS are very
similar (Fig. 1), and both Rg3 and Bg are closely linked
to Hg. Whereas the dominant Rg3 allele was linked
with the recessive one at Hg, both Bg and Hg are dom-
inant. The strong associations Bg/Hg and Rg3/hg have
been noted earlier (Philipchenko 1934; Sobko and
Sozinov 1997; Efremova et al. 1998).

Arbuzova et al. (1995) and Sobko and Sozinov
(1997) have suggested that black and red glume colour-
ation are controlled by diVerent genetic systems on
chromosome 1A. However, considering the close link-
age of both Bg and Rg3 with Hg, and on the basis of
the comparable map positions of these genes, we sug-
gest in contrast that Bg and Rg3 represent alleles of the
same gene. Likewise, we have observed similar map-

ping positions for the smokey-grey glume colouration
gene and Rg2 (Börner et al. 2002) on chromosome
1DS, which led to the suggestion that they are allelic
forms (Pshenichnikova et al. 2005). Unlike Rg2 which
originates from the diploid donor Ae. tauschii, the
smokey-grey glume allele of ‘Golubka’ arose in com-
mon wheat, as far as is known, since the pedigree
records for this cultivar show that it was a selection
from a cross between spring bread wheats, made in the
USSR in 1933 (Guidebook 1947). Thus, we believe that
Bg (1A), Rg3 (1A), Rg1 (1B), Rg2 (1D), and the gene
determining smokey-grey glume colouration (1D) rep-
resent allelic variants at a set of homoeoloci, and there-
fore propose a change in their designation to Rg-A1,
Rg-B1 and Rg-D1, with Rg-A1a, Rg-B1a and Rg-D1a
representing the non-coloured alleles. Following this
new designation, the red and black colour alleles at Rg-
A1 become Rg-A1b and Rg-A1c, respectively, and Rg2
and the smokey-grey glume genes become Rg-D1b and
Rg-D1c, respectively.

The coincidence between the Xgwm0136_264 allele
and Rg-A1b provides a further example of the utiliza-
tion of microsatellites as diagnostic markers, Wrst dem-
onstrated by Worland et al. (1998) for Xgwm261 and
the dwarWng gene Rht8. A more recent example of this
approach was provided by the report of Khlestkina
et al. (2006) of an association between Xgwm0533 and
an adult plant resistance gene against yellow rust
(Yrns-B1). Rg and Hg have potential as morphological
markers for disease resistance selection, since a num-
ber of major fungal resistance genes (Lr10 and Pm3 on
1AS, Yr10 on 1BS, Lr21 on 1DS) are known to map to
this region of the genome (McIntosh et al. 2003).
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